Category

share

Classical q-Numbers: A Study of the Case q = -1

Classical q-Numbers: A Study of the Case q = -1

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 
₹ 3,651

Availability: Out of stock

 

Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description
 

Several of the classical sequences in enumerative combinatorics have q-generalizations arising as generating functions for statistics defined on finite discrete structures. When q = 1, these generating functions reduce to the original sequences. When q = -1, on the other hand, one gets the difference in cardinalities between those members of a set having an even value for some statistic (on the set) with those members having an odd value. The current text provides a systematic study of the case q = -1, giving both algebraic and combinatorial treatments. For the latter, appropriate sign-reversing involutions are defined on the associated class of discrete structures. Among the structures studied are permutations, binary sequences, Laguerre configurations, derangements, Catalan words, and finite set partitions. As a consequence of our results, we obtain bijective proofs of congruences involving Stirling, Bell, and Catalan numbers. This text studies an interesting problem in enumerative combinatorics and is suitable for an audience ranging from motivated undergraduates to researchers in the field.

Product Specifications
SKU :COC49508
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-04-08
0 Review(s)