Call Us 080-41656200 (Mon-Sat: 10AM-8PM)
Free Shipping above Rs. 1499
Cash On Delivery*

Classification and Forecasting

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 

Check Your Delivery Options

 
Rs. 4,396

Availability: In stock

 
  • Product Description
 

This work investigates the application of Bayesian methodologies to the classification and forecasting problems. It begins with reviews of basic Static Bayesian Networks (SBNs) and the methods of probabilistic inference from SBNs, including Pearl''s causal tree and Lauritzen and Speigelhalter''s NP-complete clique tree methodologies. Pattern classification utilizing the Naïve Bayes and the Tree Augmented Naïve Bayes (TAN) classifiers is then described. Boosting and other ensemble methods are applied so as to improve performance. Attention is then turned to incorporating a time element into Bayesian Networks to create a series of SBNs, acting as time-slices to construct a Dynamic Bayesian Network, to solve the forecasting problem. Each SBN, consisting of the suitably modified TAN, and computed with correlation and partial correlation coefficients, is then combined with the Pearl causal tree. As with the classification problem, boosting is applied to improve forecasting performance. This ensemble methodology would interest researchers in diverse fields as Computer Science and Finance, and those considering an alternative to, or a combination with, traditional time-series data analysis.

Product Specifications
SKU :COC38757
AuthorAdelina Tang
LanguageEnglish
BindingPaperback
Number of Pages144
Publishing Year2010-11-08T00:00:00.000
ISBN978-3838390291
Edition1 st
Book TypeComputing & information technology
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-01-08 00:00:00