Category

Classification and Forecasting

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 
₹ 4,396

Availability: Out of stock

 

Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description
 

This work investigates the application of Bayesian methodologies to the classification and forecasting problems. It begins with reviews of basic Static Bayesian Networks (SBNs) and the methods of probabilistic inference from SBNs, including Pearl''s causal tree and Lauritzen and Speigelhalter''s NP-complete clique tree methodologies. Pattern classification utilizing the Naïve Bayes and the Tree Augmented Naïve Bayes (TAN) classifiers is then described. Boosting and other ensemble methods are applied so as to improve performance. Attention is then turned to incorporating a time element into Bayesian Networks to create a series of SBNs, acting as time-slices to construct a Dynamic Bayesian Network, to solve the forecasting problem. Each SBN, consisting of the suitably modified TAN, and computed with correlation and partial correlation coefficients, is then combined with the Pearl causal tree. As with the classification problem, boosting is applied to improve forecasting performance. This ensemble methodology would interest researchers in diverse fields as Computer Science and Finance, and those considering an alternative to, or a combination with, traditional time-series data analysis.

Product Specifications
SKU :COC38757
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)