Classification of data mining techniques in intrusion detection

Classification of data mining techniques in intrusion detection


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 2,675

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

Data mining is the process of gathering, searching, and analyzing a large amount of raw data, as to discover patterns, relationships and behavior of data. There are large numbers of algorithms for classification of data mining. Single algorithm is not efficient for classification of data and recognize their pattern and behavior .There is a key term known as ensemble learning which means Combining two or more classifiers for efficient result. I have used the KDD’99 dataset for the experiment which have 41 features labeled either as normal or as an attack. In this book I have represented how graphical machine learning tool weka can be used for data mining and how ensemble learning can be implemented using weka.I have used three classifiers with the Bagging and Boosting ensemble learning approach which are complementary naïve bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naïve Bayes. However, the rule based classifiers become more efficient with bagging and boosting techniques.

Product Specifications
SKU :COC65821
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-08
0 Review(s)