Cluster Based Data Labeling for Categorical Data


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,718

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

Clustering is an important task in data mining with numerous application, including minefield detection, seismology, astronomy etc. Categorical data clustering has been gaining significant attention from researchers since the last few years, because most of the real life data sets are categorical in nature. The real life database consists of numeric, categorical and mixed type of attributes. It is an essential task to cluster these data sets to extract significant knowledge from the existing database or to obtain statistical information about the database. Clustering large database is a time consuming process. Labeling new unlabeled data point is an issue in data mining process. In this thesis mainly focuses that , based on relational operation method to clustering categorical data set using MMRDL (Modified Maximal Resemblance Data Labeling) technique . And to allocate each unlabeled data point into the corresponding appropriate cluster based on the novel clustering representative namely, N-Nodeset Importance Representative (NNIR).

Product Specifications
SKU :COC65564
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)