Call Us 080-41656200 (Mon-Sat: 10AM-8PM)
Free Shipping above Rs. 1499
Cash On Delivery*

Compressing High-Res Images Correlated in Multiple Dimensions


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days


Check Your Delivery Options

Rs. 4,396

Availability: In stock

  • Product Description

Eigenspace methods take advantage of the fact that a set of highly correlated images can be approximately represented by a small set of eigenimages. However, all known eigendecomposition algorithms are directly proportional to the resolution of original images. With the ability to generate consistently better resolution images using state-of-the-art equipment, these techniques still show performance issues and exponential increase in memory requirements. Also, these algorithms exploit one-dimensional temporal correlation between successive images and hence, cannot be efficiently applied to images correlated in multiple dimensions. This book analyzes the effect of spatial resolution reduction of images on their resulting eigendecompositions and proposes computationally efficient technique that reduces spatio-temporal correlations in those images. This work also explains effective parametrization of images correlated in multiple dimensions and proposes optimum ordering of those images in frequency domain. This optimum ordering allows the proposed algorithm to uncorrelate the data as efficiently as possible without introducing too large an error in resulting eigenspace approximation.

Product Specifications
SKU :COC17166
AuthorKishor Saitwal
Number of Pages152
Publishing Year5/29/2010
Edition1 st
Book TypeAerospace & aviation technology
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-25 00:00:00