Call Us 080-41656200 (Mon-Sat: 10AM-8PM)
Free Shipping above Rs. 1499
Cash On Delivery*

Constructing Predictive Model for Network Intrusion Detection


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days


Check Your Delivery Options

Rs. 4,396

Availability: In stock

  • Product Description

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools. In this study, the experiments were conducted following the Knowledge Discovery in Database process model. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Product Specifications
SKU :COC17551
AuthorTigabu Dagne Akal
Number of Pages160
Publishing Year2012-12-11T00:00:00.000
Edition1 st
Book TypeComputing & information technology
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-26 00:00:00