Data Mining-Approaches to Mine Frequent Patterns


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,651

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

In data mining, Association rule mining becomes one of the important tasks of descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining frequent itemset is very fundamental part of association rule mining. Many algorithms have been proposed from last many decades including horizontal layout based techniques, vertical layout based techniques, and projected layout based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori Algorithms), memory consumption problem (FP-tree Algorithms) and many more for mining frequent patterns. As in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, in this thesis present a new technique which is combination of present maximal Apriori (improved Apriori) and FP-tree techniques that guarantee the better performance than classical aprioi algorithm. Another aim is to study and analyze the various existing techniques for mining frequent itemsets and evaluate the performance of new techniques and compare with the existing classical Apriori and FP- tree algorithm.

Product Specifications
SKU :COC17801
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)