Category

Data Mining for Tweet Sentiment Classification

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 
₹ 3,651

Availability: Out of stock

 

Delivery :

Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description
 

The goal of this work is to classify short Twitter messages with respect to their sentiment using data mining techniques. Twitter messages, or tweets, are limited to 140 characters. This limitation makes it more difficult for people to express their sentiment and as a consequence, the classification of the sentiment will be more difficult as well. The sentiment can refer to two different types: emotions and opinions. This research is solely focused on the sentiment of opinions. These opinions can be divided into three classes: positive, neutral and negative. The tweets are then classified with an algorithm to one of those three classes. Known supervised learning algorithms as support vector machines and naive Bayes are used to create a prediction model. Before the prediction model can be created, the data has to be pre-processed from text to a fixed-length feature vector. The features consist of sentiment-words and frequently occurring words that are predictive for the sentiment. The learned model is then applied to a test set to validate the model.

Product Specifications
SKU :COC18297
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)