Efficient Algorithms for ECC Using New Coordinates Systems Over GF(P)

Efficient Algorithms for ECC Using New Coordinates Systems Over GF(P)


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,651

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

The use of projective coordinates to define the Elliptic Curves (EC) instead of affine coordinates replaced the inversion operations by several multiplication operations. Many types of projective coordinates have been proposed for the elliptic curve E: y2= x3+ ax+ b which is defined over a field GF(p) to do EC arithmetic operations such as: Standard projective coordinates, Jacobean projective coordinates, Chudnovsky coordinates. In this thesis, we studied new projective coordinates systems to perform Elliptic Curves Cryptography (ECC) operations with exploiting maximum parallelism to achieve higher performance. The elected coordinates were tested by using parallel multipliers to obtain maximum gain. The result showed that three new attractive projective coordinates systems that can be used as an alternatives for the standard projective coordinates that already in use. These new coordinates are : Doubling Oriented, Tripling Oriented and Montgomery Curves. Montgomery curves gave the best results for area and time when applied for AT measure. However, the difference between these curves is very small which makes those curves to be three choices for efficient ECC Cryptprocessor design.

Product Specifications
SKU :COC17931
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-27
0 Review(s)