Enhancing and Combining a Recent K-means Family of Algorithms

Enhancing and Combining a Recent K-means Family of Algorithms


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,718

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. In this book, the researcher introduces Distance-based Initialization Method for K-means clustering algorithm (DIMK-means) which is developed to select carefully a set of centroids that would get high accuracy results compared to the random selection of standard K-means clustering method in choosing initial centroids, which gets low accuracy results. The researcher also Introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means) which is developed to address stability problems of K-means clustering, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this research concluded that the developed algorithms are more capable to finding high accuracy results compared with other algorithms.

Product Specifications
SKU :COC65488
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-08
0 Review(s)