Hosoya Polynomials of Steiner Distance of Some Graphs

Hosoya Polynomials of Steiner Distance of Some Graphs


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 5,066

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

The Steiner n-distance, d(S), of a non-empty n- subset S of vertices of a graph G is defined to be the size of the smallest connected subgraph T(S) containing S. The Hosoya polynomial of Steiner n- distance of a connected graph G is denoted by Hn* (G;x). In this work, we obtain Hosoya polynomials of Steiner n-distance(n is greater than or equal to 3 and less than or equal to the order of the graph) of some particular graphs; for other prescribed graphs, we obtain Hosoya polynomials of Steiner 3- distance. For some graphs G, we find reduction formulas for Hn*(G;x) or H3*(G;x). Wiener indices of the Steiner n-distance of most of the particular graphs and composite graphs considered here are also obtained. Moreover, the diameter of the Steiner n-distance for each one of these graphs is determined. Furthermore, Wiener index theorem for trees, which is due to H. Wiener, is generalized to Steiner n- distance of trees.

Product Specifications
SKU :COC93594
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-08-14
0 Review(s)