Category

share

Kernel based Fuzzy Clustering for Robust Image Segmentation

Kernel based Fuzzy Clustering for Robust Image Segmentation

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 
₹ 3,651

Availability: Out of stock

 

Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description
 

The goal of image segmentation is partitioning of an image into a set of disjoint regions with uniform and homogeneous attributes such as intensity, color, tone etc. Image Segmentation plays an important role in a variety of applications like robot vision, object recognition, pattern recognition, image segmentation etc. Real digital Images generally contain unknown noise and considerable uncertainty. Although the Fuzzy C Means (FCM) algorithm functions well on noiseless images but it fails to segment images when corrupted with noise. To overcome this problem this book discussed well-known “kernel methods” that have been applied for noisy image segmentation. This book analysed the performance of the four algorithms FCM, Kernelized FCM (KFCM), Kernelized Intuitionistic FCM (KIFCM), Kernelized Type-2 FCM (K2FCM) with four synthetic images in noiseless case as well as when the images are corrupted with salt & pepper and Gaussian noise. The four algorithms are studied and analysed both qualitatively and quatitatively.

Product Specifications
SKU :COC20642
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-28
0 Review(s)