Optimized Thresholding on Self Organizing Map for Cluster Analysis

Optimized Thresholding on Self Organizing Map for Cluster Analysis


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 4,396

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

One of the popular tools in the exploratory phase of data mining and pattern recognition is the Kohonen Self Organizing Map (SOM). Recently, experiments have shown that to find the ambiguities involved in cluster analysis, it is not necessary to consider crisp boundaries in clustering operations. In this Book, the Incremental Leader algorithm for the thresholding of the SOM (Inc-SOM) is proposed to validate the potential of a crisp clustering algorithm. However, the performance deteriorates when there is overlap between clusters. To overcome the ambiguities in the results of cluster analysis, a rough thresholding for the SOM (Rough-SOM) is proposed. In Rough-SOM, the data is first trained by a SOM neural network, then the rough thresholding, which is a rough set based clustering approach, is applied on the neurons of the SOM. The optimal number of clusters can be found by rough set theory, which groups the neurons into a set of overlapping clusters. An optimization technique is applied during the last stage to assign the overlapped data to the true clusters.

Product Specifications
SKU :COC17434
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-26
0 Review(s)