Oxidation Resistance of ZrB2 Based Ultra-High Temperature Ceramics

Oxidation Resistance of ZrB2 Based Ultra-High Temperature Ceramics


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,651

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

Specimens of ZrB2 containing various concentrations of SiC, TaB2, and TaSi2 were pressureless-sintered and post-HIPed to theoretical densities. Oxidation resistances were studied by scanning thermogravimetry over the range 1150 - 1550 C, and isothermal thermogravimetry at 1200 - 1900 C. Most silicon-containing compositions formed a glassy surface layer, covering an interior oxide layer. This interior layer was less porous in tantalum-containing compositions. Small concentrations of TaB2 additions were more effective at increasing oxidation resistance than equal additions of TaSi2. The benefit of these additives was related to the formation of fine particles of ZrO2 and TaC during oxidation. These particles resisted wicking of their liquid/glassy borosilicate encapsulation. With increasing TaB2 or TaSi2 concentration, oxidation resistance degraded. In these cases, zirconia dendrites appeared to grow through the glassy layers, providing conduits for oxygen migration. At 1700 C and above, a layer of ZrB2 devoid of SiC was argued to be from preferential removal of SiC by reaction of silica oxidation product with adjacent unreacted SiC to form escaping gases.

Product Specifications
SKU :COC16979
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-25
0 Review(s)