Polynomial Systems and Number of Limit Cycles in Hilbert 16th Problem

Polynomial Systems and Number of Limit Cycles in Hilbert 16th Problem


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 3,651

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

In the last twenty years, the work was done on the different problems related to the Qualitative Theory of differential equations. But during the last few years, the interest surrounded around the well-known Hilbert’s Sixteenth Problem which he posed at Paris Conference of International Congress of Mathematicians in 1900, together with other twenty-two problems [17]. In this book we are mainly concerned in the second part of Hilbert’s sixteenth Problem, which poses the question of maximal number and relative position of limit cycles of the polynomial system of the form: (A) in which P and Q are polynomials in x and y. We write the system A in the form of (B) Where , and , are homogeneous quadratic and cubic polynomials in x and y. Chapter No. 1 comprises the basic concepts for general theory of limit cycles and Hilbert’s Sixteenth Problem. Chapter No. 2 contains an Algorithm for determining so called focal basis. This can be implemented on the computer to get the estimate for the number of small-amplitude limit cycles. Chapter No. 3 deals with some classes of system (B) with several small-amplitude limit cycles.

Product Specifications
SKU :COC24652
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
Product First Available On ClickOnCare.com2015-07-28
0 Review(s)