Text Mining with Probabilistic Topic Models


Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

₹ 4,396

Availability: Out of stock


Delivery :

5% Cashback on all Orders paid using MobiKwik Wallet T&C

Free Krispy Kreme Voucher on all Orders paid using UltraCash Wallet T&C
Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description

Statistical topic models are a class of probabilistic latent variable models for textual data that represent text documents as distributions over topics. These models have been shown to produce interpretable summarization of documents in the form of topics. In this book, we describe how the statistical topic modeling framework can be used for information retrieval tasks and for the integration of background knowledge in the form of semantic concepts. We first describe the special-words topic models in which a document is represented as a distribution of (i) a mixture of shared topics, (ii) a special-words distribution specific to the document, and (iii) a corpus-level background distribution. We describe the utility of the special-words topic models for information retrieval tasks. We next describe the problem of integrating background knowledge in the form of semantic concepts into the topic modeling framework. To combine data-driven topics and semantic concepts, we describe the concept-topic model and the hierarchical concept-topic model which represent a document as a distribution over data-driven topics and semantic concepts.

Product Specifications
SKU :COC23266
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)