Category

Time-varying frequency/spectral estimation extraction

 

Marketed By :  LAP LAMBERT Academic Publishing   Sold By :  Kamal Books International  
Delivery in :  10-12 Business Days

 
₹ 4,396

Availability: Out of stock

 

Delivery :

Product Out of Stock Subscription

(Notify me when this product is back in stock)

  • Product Description
 

A time-varying autoregressive (TVAR) approach is used for modeling nonstationary signals, and frequency information is then extracted from the TVAR parameters. Two methods may be used for estimating the TVAR parameters: the adaptive algorithm approach and the basis function approach. Adaptive algorithms, such as the least mean square (LMS) and the recursive least square (RLS), use a dynamic model for adapting the TVAR parameters and are capable of tracking time-varying frequency, provided that the variation is slow. It is observed that, if the signals have a single timefrequency component, the RLS with a fixed pole on the unit circle yields the fastest convergence. The basis function method employs an explicit model for the TVAR parameter variation, and model parameters are estimated via a block calculation. We proposed a modification to the basis function method by utilizing both forward and backward predictors for estimating the time-varying spectral density of nonstationary signals. It is shown that our approach yields better accuracy than the existing basis function approach, which uses only the forward predictor.

Product Specifications
SKU :COC37571
Country of ManufactureIndia
Product BrandLAP LAMBERT Academic Publishing
Product Packaging InfoBox
In The Box1 Piece
0 Review(s)